Compact Fluidic Actuator Arrays for Flow Control, Phase II

Completed Technology Project (2009 - 2011)

Project Introduction

The overall objective of the proposed research is to design, develop and demonstrate fluidic actuator arrays for aerodynamic separation control and drag reduction. These actuators are based on a compact design of low massflow fluidic oscillators that produce high frequency (1-5 kHz) sweeping jets. Preliminary experiments on separation control over a trailing edge flap on a NACA 0015 airfoil, V-22 wing section for download reduction, cavity tones and jet thrust vectoring have shown encouraging results for these actuators. Based on the results from Phase I, and the commercial interest from a leading aircraft manufacturer, we propose to conduct a systematic study of the scaling parameters of the fluidic actuator arrays in relation to the geometric and aerodynamic parameters of the wing using wind tunnel tests on a specially designed airfoil model. This will include the effects of actuator spacing, array location, pressure gradient and wing sweep on the actuator effectiveness. Failure Modes and Effects Analysis (FMEA) will be undertaken to estimate the risk of the proposed technology. A rapid inspection technique will be developed for conducting quick, in situ testing of the fluidic arrays. Projecting to the future, a synchronous array of actuators will also be developed.

Primary U.S. Work Locations and Key Partners

Compact Fluidic Actuator Arrays for Flow Control, Phase II

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners	1	
Organizational Responsibility	1	
Project Transitions	2	
Project Management		
Technology Areas	2	

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Langley Research Center (LaRC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Compact Fluidic Actuator Arrays for Flow Control, Phase II

Completed Technology Project (2009 - 2011)

Organizations Performing Work	Role	Туре	Location
Langley Research Center(LaRC)	Lead Organization	NASA Center	Hampton, Virginia
Advanced Fluidics, LLC	Supporting Organization	Industry Small Disadvantaged Business (SDB)	Ellicott City, Maryland

Primary U.S. Work Locations	
Maryland	Virginia

Project Transitions

January 2009: Project Start

June 2011: Closed out

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Technology Areas

Primary:

TX15 Flight Vehicle Systems
 TX15.1 Aerosciences
 TX15.1.3 Aeroelasticity

